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Abstract

In this paper functional data analysis techniques are used to study
worldwide COVID-19 outbreak profiles. Indicators under investigation
include quarantined cases Q(t), mortality rate κ(t) and cure rate λ(t).
All functions are interpreted as random processes with paths in the space
L2([0, 1]) by choosing the interval [0, 1] for different time periods. Ex-
ploratory analysis includes profile parameters such as mean, variance,
depth, derivatives, principal components. Comparison of average pro-
files of different parts across the world is provided by means of a simple
trend model. Functional comparison of two COVID-19 outbreak waves is
suggested.

1 Introduction

The first suspected case of coronavirus disease-2019 (COVID-19) was fixed on
December 1st, 2019, in Wuhan, the capital of Hubei Province in China. By
March 2020, the World Health Organization declared the situation as pandemic.
Since that time confirmed cases and deaths have been reported almost at every
location over the world, many countries and regions have been locked-down
and applied strict social distancing measures to stop the virus propagation.
Understanding the propagation patterns of the disease and prediction of its
spread over time is of great importance and has attracted a large scientific
community (see, e.g., [11] and references therein).

Many classical models such as SIR [[14], [15]], SEIR [17], SEIJR [19] and
their modifications have been applied to describe the outbreak of SARS-CoV-2
in various countries (we refer to [13] for detailed exposition of the state-of-
art). These models include various indicators of disease: the number of the
susceptible cases S(t), exposed cases (infected but not yet be infectious, in a
latent period) E(t), infectious cases (with infectious capacity and not yet be
quarantined) I(t), recovered cases R(t), insusceptible cases P (t), quarantined
cases (confirmed and infected) Q(t), closed cases (or death) D(t) at time t, and
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are based on the average behavior of a population under study. Actually all
these indicators are random functions in time depending as well on location of
coronavirus outspread. Corresponding data sets usually contain daily observa-
tions. We aim to study variation among the observed data and to compare sets
of data corresponding to different parts of the world with respect to certain
types of variation. To this aim we use functional data analysis methodology
which have been applied to various areas including human growth (see, Chen
and Müller [6]), gene expression (see, Tang and Müller [7]) geomagnetic activity
(see, Gromenko and Kokoszka [8]), medicine (see, Bircan et all. [9], psychology
(see, Levitin et all., [10]) etc.

Based on the publicly available data [20], we provide analysis of the epidemi-
ological indicators Q(t), R(t), D(t) and particularly we are interested in derived
parameters: the mortality rate κ(t) and cure rate λ(t) defined by the relations

D′(t) = κ(t)Q(t) and R′(t) = λ(t)Q(t), (1)

where D′(t) and R′(t) denotes derivatives (or intensity) of D(t) and R(t) re-
spectively. The questions we are seeking to answer include the following.

• What is the typical mortality rate (respectively cure rate) pattern for
European countries? For Baltic region?

• What countries are most similar to Lithuania with respect to different
indicators, e.g., mortality and cure rates?

• In what period of pandemics there was most variable mortality and cure
across Europe?

• In what period of pandemics there was most similar mortality and cure
across Europe?

• Do some and which countries tend to have extreme mortality (respectively
cure) rate? How long periods of extreme rates last?

• How do the shapes of the mortality and cure rates patterns differ among
the East and West parts of Europe? among Europe and rest of the world?

• How similar successive epidemic waves are compared with previous waves?

The paper is organized as follows. Section 2 is devoted to preparation of func-
tional sample to be analysed. Exploratory analysis of the functional sample is
given in Section 3. Section 4 contains analysis of epidemic waves by comparing
grows rates. Finally, in Section 5 we compare different regions of the world with
respect to behaviour of epidemiological indicators.

2 Data preparation

First we discuss preparation for analysis of curves Q(t), D(t) and R(t) for t ∈ T
corresponding to different locations, where the time interval T depends on a
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question under investigation. For example T can be a length of the first wave,
or the first d days after some event etc.

In general we have a set of daily observations xji, i = 1, . . . ,mj , j = 1, . . . , n,
corresponding to either of parameter under investigation, where j ∈ J indicates
location and J is a selected collection of locations. In this paper we investigate
five separate parts of the world: Europe, Asia, Americas, Africa, Oceania. From
this set of observations we build functional sample xj = (xj(t), t ∈ [0, 1]), j ∈ J,
by setting a model

xj(t) = 0 if 0 ≤ t ≤ 1− mj

T
, (2)

xj,i = xj(1− (mj − i)/T ) + εji, i = 1, . . . ,mj , (3)

where T is a total number of days taken into analysis and εjk, k = 1, . . . ,m are
some errors. Sometimes it is convenient to transform the functions defined on
the interval [0, 1] to the functions defined on the interval [T0, T1]. This can be
done by a simple time transformation t→ (t− T0)/(T1 − T0).

In order to reconstruct each curve xj as smooth monotone function we rep-
resent, as suggested in [4],

xj(t) =

∫ t

τj

exp{wj(u)}du, t ∈ [τj , 1],

where τj = 1−mj/T . For the function wj we use basis expansion

wj(t) =

K∑
j=0

wjkψk(t), t ∈ [0, 1],

where ψk, k ≥ 1 are basis functions and we estimate the regression

xji =

∫ t

τj

exp
{ K∑
k=1

wjkψk(u)
}
du+ εji

by minimizing the criterion

mj∑
i=1

[
xji −

∫ t

τj

exp
{ K∑
k=1

wjkψk(u)
}
du

]2
+ λ

∫ 1

0

w2
j (u)du,

with respect to wj1, . . . , wjK .
Example of smoothed observations of the random process Q(t) for four coun-

tries are depicted in Figure 1.
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Figure 1: Discrete vs. smoothed quarantined observations in four Europe coun-
tries

The use of derivatives of functional sample is important in the development
of methodology of statistical inference and in extending the range of graphical
exploratory methods. The derivative curves of each of processes Q(t), D(t)
and R(t) provide extra information of disease status and can be interpreted as
intensities of quarantined, closed and recovered cases respectively. Derivatives
of Q(t) for the four countries are depicted in Figure 2.

Figure 2: Derivatives of smoothed quarantined cases in four Europe countries

In the following we shall denote by Q̂j , j ∈ J , D̂j , j ∈ J, and R̂j , j ∈ J,
functional sample of quarantined, closed and recovered cases respectively. The

corresponding derivative samples are Q̂′j , j ∈ J , D̂j

′
, j ∈ J and R̂′j , j ∈ J . Each

of the sample functions are defined on the interval [0, 1]. The ratio

ρ̂j(t) :=
Q̂′j(t)

Q̂j(t)
, t ∈ [0, 1],
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(throughout we assume 0/0 = 0) can be used to understand a profile of the
reproduction number. Indeed, as the chance of infection increases with the
number of infected individuals, assume that the variations in the population
of the number of infected I(t) between time t and t + τ (over relatively small
intervals τ) is proportional to the number of infected individuals, i.e.,

dI(t)

dt
≈ I(t+ τ)− I(t)

τ
= ρ(t)I(t)

The function ρ(t) models how the infected population evolves over time. If we
assume that I(t) = λQ(t) at least in a small time interval then we have

ρ(t) ≈ Q′(t)

Q(t)
=
I ′(t)

I(t)
.

Any functional data display two types of variability: a phase variability
and an amplitude variability. In order to make correct comparisons among the
features, observed in different countries, we need to separate these two types of
variability and look for a new parameterization of each of the countries COVID-
19 indicator. This can be achieved by means of a registration procedure that
finds warping functions hj of the abscissa, leading to the new registered functions
x̃j :

x̃j = xj ◦ h−1j or x̃j ◦ hj = xj .

Note that the registered features xj(s) of the curve xj are obtained by moving
the observed features to their new location hi(s). For example, concerning Qj
such a feature could be the first confirmed case. For Q′j it could be the extreme
points of the curve.

3 Exploratory analysis

Let x1, x2, . . . , xn be a functional sample each function being defined on the
interval [0, 1]. Exploratory data analysis is an approach to analyzing data sets
by summarizing their main characteristics, often with visual methods. Typical
graphical techniques include functional sample mean

xn(t) :=
1

n

n∑
k=1

xk(t), t ∈ [0, 1];

sample variance

σ2
n(t) =

1

n− 1

n∑
k=1

(xk(t)− xn(t))2, t ∈ [0, 1];

sample standard deviation function
√
σ2
n, sample covariance function

cn(t, s) =
1

n− 1

n∑
i=1

(xi(t)− xn(t))(xi(s)− xn(s)), s, t ∈ [0, 1];
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estimated functional principal components are functions vj(t) such that the
centred functions xi(t)− xn(t) are represented as

xi(t)− xn(t) ≈
p∑
j=1

zijvj(t), t ∈ [0, 1],

with p much smaller than the number of basis functions used to in reconstruction
of xi(t). The coefficients zij are scores corresponding to principal components.

The functional depth is a concept which measures how deep (or central) is a
datum respect to a population. The aim of data depth for functional data is to
measure the centrality of a given curve, xi, within a set of curves, x1, . . . , xn. In
functional context this provides a method to order sample curves according to
decreasing depth values: x[1]: the deepest (most central or median) curve, x[n]
the most outlying (least representative) curve. The Fraiman-Muniz functional
depth, of a curve xi with respect the set x1, . . . , xn is given by

FMDn(xi) =

∫ 1

0

Dn(xi(t))dt,

where Dn(xi(t)) denotes the univariate depth of the data xi(t) in the sample
x1(t), . . . , xn(t).

Outliers in a functional data set can arise for, at least, two reasons: (1)
outliers may be curves with gross errors such as measurement, recording, and
typing mistakes. These errors should be identified and corrected whenever pos-
sible; (2) outliers may be real data curves in the sense that they are not gross
errors but are somehow suspicious or surprising as they do not follow the same
pattern as that of the rest of curves. We are interested in detecting and examin-
ing precisely such surprising curves as, first, they may bias functional estimates
and we would like to prevent this, and, second, they may allow to discover which
sources produce these outlying curves.

In order to identify outliers in functional data sets, we make use of functional
depths. If an outlier is in the data set, the corresponding curve will have a
significant low depth. Therefore, a way to detect the presence of functional
outliers is to look for curves with lower depths. Consequently, we have the
following functional outlier detection procedure for detecting outliers in a given
dataset of functional curves x1, . . . , xn:

(1) Obtain the functional depths Dn(x1), . . . , Dn(xn).

(2) Let xi1 , . . . , xik be the k curves such that Dn(xik) ≤ C, for a given cutoff
C. Then, we assume that xi1 , . . . , xik are outliers and delete them from
the sample.

(3) Then, come back to step (1) with the new dataset after deleting the outliers
found in step (2). Repeat this until no more outliers are found.

We select C such that, in the absence of outliers

P (Dn(xi) ≤ C) = 0.01, i = 1, . . . , n.
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Thus, the C taken is the 1’th percentile of the distribution of the functional
depth under consideration.

The rest of Section 3 explains the situation of COVID-19 outbreak only in
the countries that are in Europe region. Equivalent analysis is carried out for
the rest of the regions, but is not described in the further sections.

3.1 Quarantined cases

After the SARS-CoV-2 virus was first discovered in China, it spread rapidly to
other regions. First in Europe and then in America and elsewhere. Figure 3
illustrates smoothed curves of quarantined casesQj(t) as well as their derivatives
in Europe region for the period January 22, 2020 - December 20, 2020. The
figures highlight the Baltic region, Poland and the top 3 countries that had
the most cases on December 20, 2020. Almost every affected country share
same pattern of the epidemic spread which is S-shaped curve for the confirmed
cases. The highest total quarantined cases are in Andorra, Montenegro and
Luxembourg, followed by Lithuania, Poland, Estonia and Latvia. Number of
quarantined cases discovered daily are the highest in Slovenia, Lithuania and
Croatia in December 20, 2020.
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(a) Smoothed Qj(t)
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(b) Derivatives of Qj(t)

Figure 3: Quarantined cases in Europe

Figure 4 represents estimated functional sample mean, 95% confidence in-
terval, the Fraiman-Muniz functional depth and outliers for Europe region. In
Europe, one country distinguishes from the situation of pandemic, which is
Andorra. Since quarantined cases are observed as a indicator per 100, 000 in-
habitants, later country is characterized by a marginal population size and a
high rate of infection is observed. Such countries should be analyzed separately
due to the latter reasons. The most customary situation according the depth
analysis is in Austria.
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Figure 4: Exploratory analysis of quarantined cases for Europe region

To understand the primary modes of variation in the COVID-19 data, func-
tional principal component analysis is performed. Three components explain
almost all variability across the European countries. The first functional com-
ponent explains 82.4% of variation, seconds – 14.1% and third – 3.5%. Figure 5a
displays the effect of the first three principal components to the situation of pan-
demic of COVID-19. In each case of Figures 5b-5d, the solid curve is the overall
mean quarantined cases function, and the dotted and dashed curves show the
effects of adding and subtracting a multiple of each principal component curve.
This considerably clarifies the effects of the first three components. The first
principal component corresponds to a overall situation in Europe, where the sec-
ond waves of Covid-19 emerge and the first fades before the latter. The second
corresponds to an effect of the start of the first and second wave of Covid-19.
Whereas the third corresponds to the magnitude of the first, second and even
third waves for some countries of Covid-19.
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(c) 2st functional PC
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(d) 3st functional PC

Figure 5: The first three principal components of quarantined cases and the
mean curves with the effects of adding (+) and subtracting (–) a suitable mul-
tiple of each PC curve.

It can be profitable to plot the principal component scores for pairs of har-
monics to see how curves cluster and otherwise distribute themselves within
the 3-dimensional subspace spanned by the eigenfunctions. Figure 6 reveals
some fascinating structure. Two Baltic countries Estonia and Latvia behaves
very similarly as some Nordic countries and Germany, while Lithuania is further
apart.

Figure 6: The scores of the Europe countries on the first three principal com-
ponents of quarantined cases.
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3.2 Recovered and closed cases

Equivalent analysis is carried out for the recovered R(t) and closed D(t) cases.
Figure 8 illustrates smoothed curves of recovered and closed cases as well as
their derivatives in Europe region for the period January 22, 2020 - December
20, 2020. The figures highlight the Baltic region, Poland and the top 3 countries
that had the most cases on December 20, 2020. The highest total recovered cases
are in Andorra, Montenegro and Luxembourg, followed by Poland, Lithuania,
Latvia and Estonia and for the closed cases - San Marino, Belgium, Italy in
December 20, 2020. Number of recovered cases discovered daily are the highest
in Montenegro, Latvia and Croatia, whilst for closed cases - Croatia, Bosnia
and Herzegovina and Lithuania in December 20, 2020.
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(a) Smoothed Rj(t)
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(b) Derivatives of Rj(t)
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(c) Smoothed Dj(t)
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(d) Derivatives of Dj(t)

Figure 7: Recovered Rj(t) and closed Dj(t) cases in Europe

Figure 8 represents estimated functional sample mean, 95% confidence in-
terval, the Fraiman-Muniz functional depth and outliers for both recovered and
closed cases in Europe region. In Europe, one outlier is dicovered for recov-
ered cases, which is Andorra. The most typical situation according the depth
analysis is in Estonia for the recovered cases and in Lithuania for the closed
cases.
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(a) Recovered cases
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(b) Closed cases

Figure 8: Exploratory analysis of recovered and closed cases for Europe region

The analysis of functional principal component analysis reveals that the first
functional component explains 82.2% of variation, seconds – 15.9% and third –
1.9% for recovered cases in Europe. Figure 9 displays the effect of the first three
principal components to the situation of pandemic of COVID-19 for recovered
cases. In each case of Figures 9b-9d, the solid curve is the overall mean recovered
cases function, and the dotted and dashed curves show the effects of adding and
subtracting a multiple of each principal component curve. The first principal
component corresponds to a overall situation in Europe, where the second waves
of Covid-19 emerge and the first fades before the latter. The second corresponds
to an effect of the start of the first and second wave of Covid-19 for recovered
cases. Whereas the third corresponds to the magnitude of the first, second and
even third waves for some countries of Covid-19.
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(d) 3rd functional PC

Figure 9: The first three principal components of recovered cases and the mean
curves and the effects of adding (+) and subtracting (–) a suitable multiple of
each PC curve.
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Figure 10: The first three principal components of closed cases and the mean
curves and the effects of adding (+) and subtracting (–) a suitable multiple of
each PC curve.
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Figure 11: The scores of the Europe countries on the first three principal com-
ponents of recovered cases.

Figure 12: The scores of the Europe countries on the first three principal com-
ponents of closed cases.

3.3 Mortality and cure rates

Mortality, respectively cure, rate at time t corresponding to country j is esti-
mated by

κ̂j(t) =
D̂′j(t)

Q̂j(t)
, t ∈ [0, 1]
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respectively

λ̂j(t) =
R̂′j(t)

Q̂j(t)
, t ∈ [0, 1],

assuming 0/0 = 0.
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Figure 13: Mortality and cure rates in Europe
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Figure 14: Exploratory analysis of mortality and cure rates in Europe
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Figure 15: fPCA κ̂j(t)

Figure 16: Scores κ̂j(t)
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Figure 17: fPCA λ̂j(t)

Figure 18: fPCA λ̂j(t)
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4 Epidemic waves

Propagated epidemic curves usually have a series of successively larger peaks.
The successive waves tend to involve more and more people, until the pool
of susceptible people is exhausted or control measures are implemented. The
2019–20 coronavirus (COVID-19) pandemic shows classical pattern of propa-
gated epidemic with more than one wave. Arguably, slowdown in the first wave
was achieved because of the strict control measures which were implemented
worldwide. However, once the restrictions were relaxed and countries opened
their economies, the spread of the virus started to accelerate again, thus we
experienced the second wave.

In this section we explore the epidemic waves and how functional data can
help to localize each wave using first and second order derivatives. Then, we
propose a similarity metric of two waves. This metric can be used for clustering
and forecasting. The inclusion of the similarity into the forecasting models can
improve accuracy because it carries the behavioral patterns of the population.

Figure 19: Derivatives of the confirmed cases in four Baltic countries with
marked change points in epidemic wave acceleration.
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Figure 20: COVID-19 cases confirmed in Lithuania and Estonia with segmented
epidemic waves.

There is no strict definition for an epidemic wave. Normally, a wave implies
a rising number of affected individuals, following by a peak of new cases and the
decline. The decline does not mean that outbreak is over. The future outbreaks
of disease are possible. To better understand and compare the epidemic waves
first we need to localize the beginning and the end of the wave. We will take ad-
vantage of the information in derivatives which is probably the most distinctive
feature of functional data. The figure 19 shows the derivatives of the confirmed
cases in the Baltic region. Having data in this form helps to find epidemic wave
peaks. The peak points are considered if Q′(t−) < Q′(t) > Q′(t+) and epidemic
wave end point is considered if Q′(t−) > Q′(t) < Q′(t+) which is also a start
point for the successive wave.
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Figure 21: Second order derivatives of four Baltic countries.

The second order derivative can be even more informative. In figure 21 we
plot log(Q′′f(t)) and empty area is where Q′′(t) ≤ 0.

4.1 Epidemic growth rate similarity

Many factors like restrictions or susceptible people pool may influence the epi-
demic growth rate therefore each segment may have different characteristics.
While each wave can be analyzed independently we compare the rate by mea-
suring the angle between segments. The figure 20 shows the confirmed cases
with marked segments and angle between vectors. If the angle α is equal or
larger than 180◦ it may indicate that the successive wave is starting to acceler-
ate or reaching it’s peak value, while the lower value indicates that the successive
wave is still progressing. Normally, when we take more days into account the
curve of the angles should form U-shape, starting with value around α ≈ 180◦

when epidemic catches momentum the angle declines and finally, when epidemic
reaches it’s peak, the value should again stay around.

To reveal similar patterns between the countries we use functional kmeans
as a clustering method. The results are plotted in figure 23. There are strong
differences between blue cluster with three countries (Bulgaria, Poland, Czechia)
and green and red with the rest of the european countries.

4.2 Epidemic wave acceleration

As we have seen from similarity curves and their clusters, there are some behav-
ioral differences and similarities on how the epidemic waves develops over time.
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Figure 22: Angle curves of the European countries

Figure 23: Angle curve clusters
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Green Italy, Estonia, Finland, Germany, Norway, Ireland

Red
Austria, Belgium, Latvia, Lithuania, Luxembourg, Cyprus, Netherlands,
Sweden, Denmark, Portugal, Hungary, United Kingdom, Switzerland

Blue Bulgaria, Czechia, Poland

Figure 24: Second order derivatives comparison between different clusters
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Figure 25: Functional principal components of the angle curves of European
countries

Using the power of functional data we look into second order derivative for the
explanation of the difference particularly between green and red clusters as seen
in the figure 23. The figure 24 shows second order derivatives of confirmed cases
for countries belonging to different clusters. We can see, that countries in the
green cluster tend to have more symmetric grow speed compared to red cluster.
Which explains why starting angle for green cluster are normally larger. There
can be different interpretations but one way of explaining this, is that countries
in green cluster has very similar behavior during both epidemic waves. This
suggests that, compared to other countries where second wave is much stronger,
their approach of managing epidemic is more effective. At least during the
second wave.

4.3 Similarity principal components

Functional principal components can reveal similarity behavior of the epidemic
waves illustrated in figure 25. Three components explains 99% of variability
and we can see three primary modes of variations in the similarity behavior.

A more informative way of interpreting the principal component functions
or harmonics is to look as perturbations of the mean (see figure 26). The
+ and − signs show what happens when a principal component is added or
subtracted to the mean. The first component which explains majority of the
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Figure 26: Functional principal components of the angle curves of European
countries are shown as perturbations of the mean, which is solid line. The
+ and − signs show what happens when a principal component is added or
subtracted to the mean.
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variations explains common pattern, slightly less variation is captured at the
end. Which may indicated that the progress looks very similar for all countries
at the start and later, when countries implement different strategies to combat
with pandemic diverges from the mean.

5 Covid-19 effect on the regions

In order to investigate the position of all countries in the presence of Covid-19,
a model is being developed to assess the impact of a pandemic.

5.1 Modeling quarantined, recovered and closed cases

Each country belongs to one of the five regions: Europe, Asia, Americas, Africa,
Oceania. We denoted by Qj(t) the quarantined cases at location j on the tth
day of the year. In order to see the differences among the regions, the model
follows

Qj(t) = µ(t) + qr(j)(t) + εj(t) (4)

with modeled period from January 11, 2020 to December 20, 2020. The
function µ represents the overall pattern of quarantined cases across the sample
that represents the world. The function i→ r(j) assigns one of the five regions
to the location j. The function qr describes the effect of the location being in
region r, with r = 2 for Europe, r = 3 for Asia, r = 4 for Americas, r = 5
for Africa and r = 6 for Oceania. To ensure identifiability, we assume that∑6
r=2 qr(t) = 0.
Figure 27 depicts estimated coefficients of the model (4). An intercept func-

tion illustrates an overall average of the behavior of the virus analyzed in the
model, along with coefficient functions that capture deviation from this average
for each of five regions. From the results of Figure 27, the least affected by the
number of quarantined cases of Covid-19 is Americas region, since the deviation
from overall mean is decreasing, which means that fewer people get sick com-
pared to the previous period. Africa is the in the worst position affected by the
quarantine cases of Covid-19 since the end of autumn of 2020 as more people
tend to be infected by the corona virus. In Asia, Europe and Oceania regions
the situation is in average the same compared to the overall mean. Although
the number of quarantined cases in Europe from 1 June, 2020 to August 31,
2020 has slightly declined and then came to to the overall average, whereas in
Oceania of the same period the situation of infected people had worsened, but
improved again after the end of the cold season.
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Figure 27: Estimated overall and regions effect for the quarantined cases of
COVID-19

Equivalently, models for recovered Rj(t) and closed Dj(t) cases are defined.
Figure 28 depicts model results for the recovered cases, whilst Figure 29 illus-
trates the Covid-19 position in closed cases. The main difference between the
two models is that recovery is expected to have as high a function value as
possible and, in the case of closed cases, loss to a minimum. Figure 28 reveals
that in Africa the probability of recovery increases recently compared to the
rest of the world and decreases for the Americas region. But such effect is due
to increasing and decreasing number of quarantined cases in the latter regions.

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
60

0
10

00

Intercept

Day

0.0 0.2 0.4 0.6 0.8 1.0

−
60

0
−

20
0

20
0

60
0

Africa

Day

0.0 0.2 0.4 0.6 0.8 1.0

−
60

0
−

20
0

20
0

60
0

Americas

Day

0.0 0.2 0.4 0.6 0.8 1.0

−
60

0
−

20
0

20
0

60
0

Asia

Day

0.0 0.2 0.4 0.6 0.8 1.0

−
60

0
−

20
0

20
0

60
0

Europe

Day

0.0 0.2 0.4 0.6 0.8 1.0

−
60

0
−

20
0

20
0

60
0

Oceania

Day

Figure 28: Estimated overall and regions effect for the recovered cases of
COVID-19
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Figure 29 shows the deteriorating situation in Africa and the improving in
Oceania regions. However, again, this depends on an increasing or decreasing
number of quarantined cases.
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Figure 29: Estimated overall and regions effect for the closed cases of COVID-19

As we see the number of quarantined, recovered and closed cases analyzed
separately does not disclose the complete context about the Covid-19 situation
in the world. Therefore, mortality and recovery rates are examined, which take
into account the number of quarantined cases.

5.2 Modeling mortality and cure rates

The same concept of model (4) is applied to design the mortality κ̂j(t) and cure

λ̂j(t) rates with modeling period July 1, 2020 - December 20, 2020. Figure 30
discloses estimated coefficients for the mortality rate of Covid-19. In overall,
since the beginning of July, 2020 the mortality rate has declined, which might
show that people have acquired immunity to the virus or treatment methods
have made it possible to control the spread of the disease in the human body,
even though no vaccine has been developed. However, in the beginning of July,
2020 the mortality rate was even higher in Africa region, while it was lower in
Europe, Americas and Oceania regions. Nevertheless, as of the beginning of
August, 2020 mortality rates are similar around the world. Additionally, it is
likely that mortality rates should be further reduced once people are vaccinated.
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Figure 30: Estimated overall and regions effect for κ̂j(t) of COVID-19

In Figure 31 In overall, since the beginning of July, 2020 the cure rate has
declined. This effect might be explained by the fact that more and more people
are infected and there is an insufficient number of beds in treatment facilities,
where a certain percentage of infected people are treated at home and do not
have emergency care if the situation worsens. Surprisingly, the highest recovery
rate is in Africa. As of the end of the autumn of 2020, the situation has deteri-
orated in the European and American regions, whilst in Asia the cure rate has
risen.
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Figure 31: Estimated overall and regions effect for λ̂j(t) of COVID-19
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